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An important phenomenon in hydrodynamics is the transition from laminar to turbulent 
flow. It has been established that the transition in a boundary layer on a plate in the 
presence of low-level freestream perturbations is induced by instability of the laminar 
flow. The convection (quasilocal) theory of hydrodynamic stability is now well developed; 
it describes the propagation and downstream buildup of Tollmien-Schlichting (T-S) waves, 
which also lead to transition. 

However, Landau and Lifshitz [i] inform us that the stability problem for steady flow 
around bodies of finite size has not been theoretically developed to data, and such a mathe- 
matical investigation is extremely complicated. In view of the complexity of the problem, 
it is natural to approach it one step at a time. One such step is to seek out and calculate 
some kind of upstream transfer of the disturbances. For a perfectly rigid plate we know 
that disturbances can be transferred upstream only by sound (actually pseudosound). The 
objective of the present study is to calculate the transmission of sound by a T-S wave at 
the end of the plate, i.e., to determine the amplitude and structure of the transmitted 
sound wave. 

i. For small Mach numbers M the T-S wavelength 11 = 2z/~ I (~l is the x-component of 
the T-S wave vector; see Fig. i) is much smaller than the sound wavelength at the same 
frequency. We can therefore solve the problem in two steps [i], first solving the problem 
of the incidence of a T-S wave on the end of the plate in the incompressibility approximation 
and then comparing this solution at distances from the end of the plate much greater than 
11 with a sound wave. At large Reynolds numbers R the T-S wavelength is much smaller than 
the length of the plate [2], so that the characteristic length in the x-direction is I 1. We 
adopt the velocity of the flow impinging on the plate (freestream velocity) and the thickness 
of the boundary layer at the end of the plate as our characteristic scales. 

The steady-state velocity profile represents boundary layers of unit thickness, which 
join at the end of the plate, where an inner boundary layer is formed with a thickness of 
the order of [3] ~ ~ (X/R)I/3. The dashed lines in Fig. i indicate schematically the boun- 
daries of the upper, lower, and inner boundary layers. The boundary layer above the plate 
changes with the size of the plate, so that in light of the foregoing considerations its 
variation with x can be disregarded. The scale Yc of the T-S wave along y is ~(u0(y c) = ~/~l, 
where ~ is the frequency) on the upper branch of the neutral curve is of the order of [2] 
yc - R-I/I~ and the thickness of the inner boundary layer at x ~ 11 is of the order of [2] 
6 ~ (~iR)-l/~ - R-~/l~ We therefore have 6/y c - R-I/s at x - I I. In this situation it is 
natural to replace the inner boundary at large R by a surface of discontinuity, where match- 
ing conditions must be established, and the steady-state velocity profile is assumed to be 
independent of the coordinate x. The required matching conditions are continuity of the 
velocity, pressure, and the derivative of the tangential component of the velocity along the 
normal to the discontinuity surface. 
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Fig. 2 

We write the velocity vector in the form of a s u m  v = v o, + v l ,  where v i is a small 
perturbation, and the steady flow velocity is 

Vo = (uo(y), O, 0). (1 .1)  

In this notation, according to the foregoing discussion, we formulate the first step of the 
problem as follows: for the equations 

Ov l av I , . i 
a--F + u~ ~-z + u~ (v1"J) i = -- grad p + ~Avl, divv~ = 0 ( 1 . 2 )  

find a solution 

= / e x p  [ - -  i (o)t - -  ~z)] (VT--S: (Y) exp  (ioqx) q- v_) ,  x < O, 

v l  Lexp [ - -  i ((or - -  ~z)l v + ,  x > O, 
( 1 . 3 )  

that satisfies the matching conditions 

[av~] 
lvx] = t~] = [p] = O, Ill =/(z, +0) -l(z,-0), x>0 (1.4) 

and the boundary conditions 

v,  = O , y  = O, x < O ;  v l - + O , y - + + _ _ _ ~  (1.5) 

(il and |i are unit vectors along the x and y axes, and i denotes imaginary unity). In Eq. 
(1.3) vT_s(y)exp(i~ix + iSz) is a T-S wave of specified amplitude incident on the end of the 
plate at y ! 0, v_ is a linear combination of waves traveling to the left from x = 0, v§ 
is a combination of waves propagating to the right from x = 0 (the significance of dividing 
the waves into two groups is clarified in [4]), and ~ is the z-component of the T-S wave 
vector; it is a small quantity 

<Mm, (1.6) 

so that the generated sound wave does not exist otherwise. 

Since Eq. (1.2) and conditions (1.4) and (i.5) are symmetric about y = 0, v I can be 
represented as the sum of a symmetric solution and an antisymmetric solution. These solu- 
tions are sought independently. 

2. We write the antisymmetric solution as the sum 

( ~  ) = ( u ,  v,w). v 1 ---- e x p  [ - -  i (~ot - -  ~z) ]  -~  v Y - s  e x p  (i~lx) + v~ , v~ (2.1)  

Eliminating the time and the coordinate z from Eq. (1.2) by means of Eq. (2.1) and then 
applying the generalized Fourier transform with respect to x [5], we obtain the following 
relations for the Fourier transform V [2]: 

d 2 
L~V ---- ~zR [ (u  o - -  c ) L  - -  uo] V, L ---- ~y~ - -  y*, T * = ~z ~ + ~*, c ---- m.(z, ( 2 . 2 )  
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V - -  V e  ~ i #  t pn  
= _ = v+ = v+ + + %-s/(2 - y=O; 

V--)- 0, y - +  q_-oo, 
( 2 . 3 )  

where 

0 

V = V _  + V+, V_ = ]/---~ v exp ( - -  lax) dx, 
--oo 

oo 

0 

(2.4) 

Conditions (2.3) are obtained as follows: V_(0) = 0 follows from Eq. (2.4) and condition 
(1.5), Vi (0) = 0 follows from Eqs. (2.4), (1.5) and the equation of continuity, V+'(0) = 
0 follows from Eq. (2.4) and the symmetry of the sought-after solution, and the final equa- 
tion (2.3) is a consequence of the discontinuity of u 0' at y = 0, conditions (1.4), and 
the symmetry of the solution. 

Problem (2.2)-(2.4) is solved by the Wiener-Hopf method [6]. The domains of analyticity 
and singularities of V_ and V+ are shown schematically in Fig. 2; the domain of analyticity 
of V_ lies above the contour c_, and that of V+ is below the contour c+. The singularities 
of V_ and V+ are determined by the form of the disturbances propagating to the left and to 
the right of x = 0. They are four branch points given by the equations y = 0 and a - ~ - 
iy2/R = 0, along with isolated singularities, which are obtained as the corresponding part 
of the discrete spectrum of the Orr-Sommerfeld operator (2.2), (2.3). It is necessary to 
choose either the first two or the last two conditions in order to find the spectr~n in 
Eqs. (2.3) at y = 0. In Fig. 2 ~r and ai are the real and imaginary parts of ~. Assuming 
that Eq. (2.2) has a solution which decays in the limit y ~ ~, we write it in the form 

( 2 . 5 )  
V = c1% + c2% 

(2.6) 

Making use of the 

(~I is a decaying nonviscous solution, and ~s is a decaying viscous solution [2]). Using a 
procedure described in [6] [eliminating c I and c 2 from Eqs. (2.3)-(2.5)], we obtain 

V f  a - - % = V + F ' a = i ? ~ ( a ' ) R p r ' s / ( 2  ]/-2n), F =  iaRuo+ ~, , - - - w - - .  
z% -- ~1% Ju=o 

(PT-S is the pressure in the T-S wave at the end of the plate at y = 0). 
behavior of ~l and ~2, we find 

l ira (F/(2?a))  = t .  

We can therefore factor F, following [6], in the form 

F = 27~?3+K+/K_, ?_ = V ~ + i~, ?+ = ]/o~ - ~ ,  

[ i ~ ln(F/2? a) dt~ 1 " 
) ), J 7 ~  d r .  

7 -- \ e+ 

( 2 . 7 )  

Repeating the procedure of [6], we reduce Eq. (2.6) to the form 

a f K_ (%) = 2?~K+V+ + a _ % ?5  (al) 
- % (%) 

The left-hand side of this equation is analytic above c_ (Fig. 2), and the right-hand side is 
analytic below c+. Consequently, the function J(~) represented by Eq. (2.8) is analytic in 
the entire plane. It has been shown [7] that the stream function behaves as follows at short 
distances from the end of the plate: 

3o o)  F ~  + y2, 8 = 2  arctg ~-Y : .  xtr N r 31~ cos -~ + 3 cos ~ , r = (2.9) 
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Accordingly, v(x, 0) - Jx at x > 0. Then V+(0) - ~-3/~ in the limit a § ~, a i < 0 [8]; K_ 

and K+ tend to unity in the limit a + = in their domains of analyticity. It follows from 
these estimates and Eq. (2.8) that J(a) is bounded in the half-plane a i < 0. The function 
J(=) is readily estimated for =i < 0. By virtue of relation (2.9), the pressure p admits 
the estimate p(x, 0) ~ x -i/z, x < 0, at r << i. As a result, exploiting the symmetry of 
the problem, we obtain the Fourier transform of the pressure 

P @  = P_(O) -.~ ~ - w ,  ~--,- oo, ~ > O. 

Next, expressing V'(0) and  P(0) in terms of ~ and ~ by means of Eq. (2.5) and invoking 
conditions (2.3), we can estimate the behavior of the constants in Eqs. (2.5) in the same 
domain ai > 0. Now, writing V'"(0) in the form (2.5) and making use of conditions (2.3), 
we have 

V~(O) ~ ~ i , ,  ~ _ + ~ ,  ~ > 0 .  

It follows from this result and from Eq. (2.8) that J(a) is bounded for ai > 0. Consequently 
J(a) is bounded in the entire plane and is therefore equal to a constant. Expressing V_'"(0) 
from Eq. (2.8) and simplifying the result, we obtain 

a a? [ = - - a ~  ] (  i const) ,  ( 2 . 1 0 )  V vt = ~ -- CZl b, b = ~ :  ~15 @xp [---~-/-- I (~) h -- % 

y In (f/7) dt. 
I (~z) = ( t  - % )  (t - ~) 

C__ 

Writing V' and V''' + iaRu0'V at y = 0 in the form (2.5) and invoking conditions (2.3), we 
o b t a i n  

r p t~ t r e 
+ = + + + 

We f i n d  c 1 and  c 2 f r o m  t h i s  s y s t e m ,  and  f o r  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  p o t e n t i a l  

Y 

~D= ~ Vdy 

we obtain 

(I9 ---- b exp (-- yy) qD2 , , - -  . . . . . .  y > t .  
? qh (qo;' ~- ' t~R%%)-- q~l(q~, + i~R%, 2 v=o 

( 2 . 1 1 )  

The potential of the perturbations specifying the sound wave is determined at large distances 
(r >> X I) by the behavior of ~ in the neighborhood of 7 = 0. We must therefore investigate 
the behavior of the factors in Eq. (2.11) in the limit 7 + 0. Using Eq. (2.2) and the atten- 
uation conditions for ~i, and ~2, we write the expression for F in the form 

[;< i< i~Zu 0 - -  iO~ + e~l d y e 2  - -  i a u  0 - -  

F=~R %,,_ ,% 

io~ + ~2 dy~ 
i 

,--]Y=O 

( 2 . 1 2 )  

The numerator in Eq. (2.12) is proportional to y in the limit y + 0, and it is easily verified 
by the direct substitution of ~, and ~ that the denominator does not vanish in this limit 
[2]. Consequently, F/y has a nonzero finite value in the limit y + 0, and so I(-i~) exists in 
Eq. (2.10): To within a multiplicative factor, the denominator of expression (2.11) coincides 
with the numerator of (2.12), which is Headily calculated in the limit y + 0. Carrying out 
the calculations for # in the neighborhood of 7 = 0, we obtain 

c*- -a l  e x p [  2hi - '  i~)--?g y > i ,  y -+O.  ( 2 . 1 3 )  
~P ~ toRy+V_']_ (a~) 
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The constant in Eq. (2.13) is chosen for ~ = 0. In order for the potential to decay in the 
limit ~ + 0, r + =, the constant must be equal to -i/a~. For ~ # 0 its value differs from 
I/~ by a small term of the order of ~ (~ < Mm). Accordingly, 

"1 r~<, + ~  ,.. vu], ~<~I(<oR<~Y), u > 1, v->- o. (2.14) 

3. We calculate the limits 

<~t+- ~13 t ~- i~) (3. l )  
2~ i  - ~ 

as the neutral curve tends to infinity along the upper branch [2]: 

"" t 

R - +  oo ,  co ~-" P t -1 /5 ,  (x~ ~,~ VUoO). (3.2) 

We first transform I(-i~). Using the expression for F (2.12) and the asymptotic representa- 
tions for ~l and ~2 [2], we have 

F, 'v  = ~<,~,~/'(o)r~,,'(v/(o)), r i  = J + O(I/I/o)R), 
Y y y 

/ = ~ - v (~ - ~)~ j" (~o - ~)-~ du + V ~ S (~o - -  ~)-~ S ("o - -  ~)~ du dy - - . . .  
1 1 1 

(3.3) 

The asymptotic expansions of ~i and ~2 given in [2] can be used on c_, since c_ lies in the 
domain ~i < 0 and c i = Im(m/u) > 0. As for the small neighborhood of the point a = ~ where 
the given asymptotic expansions are invalid, we keep the contour of integration far from 
this point in making the limiting transition (3.2). We introduce D by means of the equation 

F iR(~--(o)2g(--i~)D (3.4) 

It is readily verified that D(-i~) = !. If F/u in the form (3.4) is substituted into the 
expression for I (2.10), I decomposes into a two-term sum, and we close the first contour 
(Fig. 3a) through the lower half-plane, so that it is equal to zero. In regard to the term 
containing in D, here we go from the contour c_ to the contour c_' (Fig. 3a). In this case 
the integral along c_ is equal to the sum of the integral along c_' and the residue at 
the point t = ~. The residue tends to zero in the limit ~ + -i$ [D(-i$) = i], and expression 
(3.1) acquires the form 

i + i~/~ I ! In D (t') dr' t = ~ t ' .  ( 3 . 5  ) 
2~i (t'  - ~) (t '  + i ~ / % ) '  

c _  

Analyzing the behavior of D(t') on the basis of Eqs. (3.3) and (3.4) in the limit R + 
(3.2), we can verify that D(t') tends uniformly to the limiting function on any finite arc 
that emanates from the origin, does not contain t' = 0, and lies in the interval t! < 0: 

I - -  

The cuts J~; and ~' are shown in Fig. 3b. It is also readily shown that the integral (3.5) 

converges uniformly with respect to R in the limit R § = (3.2). It follows from these consi- 
derations that the quantity (3.1) obtained in the limit R + = (3.2) is equal to the integral 
of the limiting function 

% + i ~  t ~ ] n ( l - - ? t ' ) d t '  
] i i n  9--"~--tI(--[~)=~i J ({ - -  t ' )  t '  (3.6) 

r  

We deform the contour c_ into the contour F (Fig. 3b) and reduce the integral (3.6) to the 
tabulated form [8] 

§ 
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Fig. 3 

cc 

+ j l n ( i x  ~ x2) i~-xl t+i dx =In K2"+~. 

0 

Now, s u b s t i t u t i n g  Eq. ( 3 . 7 )  i n t o  ( 2 . 1 4 )  and making u s e  o f  Eq. ( 2 . 5 ) ,  we o b t a i n  t h e  f o l l o w i n g  
e x p r e s s i o n  f o r  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  p o t e n t i a l  in  t h e  l i m i t  R ~ ~ in  t h e  n e i g h b o r h o o d  
~ §  

(Ii)~ PT-S exp( i  ) 2~ V - ~  (~ +~,) - $ - ~ y  , y > ~ .  (3 . s )  

For the potential at large distances ((M~) -I >> r >> i) we find [8] 

l qP exp (lax) dx = PT-S exp -- exp (-- ty) cos tx T --~- 
(# = -~/--~ (o.~ V-'7~z V T  dt = 

--oo ~ o o  

(3.9) 

(0 and r are given by Eqs. (2.9)). 

4. We now examine the behavior of the acoustic potential at r >> i, seeking it in the 

form 

= exp [-- i (~t  - -  ~z)] sin (O/2)g(r). ( 4 . 1 )  

S u b s t i t u t i n g  Eq. ( 4 . 1 )  i n t o  t h e  sound p r o p a g a t i o n  e q u a t i o n  

A T = M 202~ (4.2) 
or2 ' 

we have 

k ~ = f i t  - ; ~  (4.3) 

The solution of Eq. (4.3) for a wave traveling away from the origin is written in the form 

Comparing Eqs. 

g = C exp (ikr) 
V ;  " 

(4.4) and (3.9) in the interval (Mm) -l >> r >> i, at r >> 1 we find 

(4.4) 

(4.5) 
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The pressure in the sound wave p = -a~/St acquires the form 

P = - exp - ot- + 

Let L be the length of the plate. The potential (4.5) represents the generated sound wave 
for Lk >> i. Indeed, the amplitude of the sound wave arriving from the end of the plate 
has the following relative order of magnitude at the forward edge: 

Vr< N--V  < 

We adopt ru z = i conditionally as the origin. Consequently, sound generated at the forward 
edge cannot significantly alter the sound field 4.5). For 

L k < < i  (4.6) 

the forward edge of the plate lies in the zone 

k - l > > r > > t ,  (4.7) 

and the potential (3.9) cannot be used for matching with the sound wave. The potential in 
the domain (4.7), subject to condition (4.6), must be sought as the solution of the following 
problem: find a solution of the Laplace equations subject to the conditions 

= o, y = O, x < - - L ;  a ~ / a y =  o, y = O, - - L < x < O ;  

= 0 ,  y = 0 ,  x > O .  

In the vicinity of r = 0 the potential ~ has a singularity of the form (3.9) and is bounded 
in the remaining space. The solution of this problem is unique [9] and has the form 

At r >> L we have 

PT-S exp ---8- sin (0) 
~-- .  . ( 4 . 8 )  

~m V 2~zl/L r 

The acoustic potential, which goes over to (4.8) at k -z >> r >> L is written as follows at 
distances kr >> 1 [i]: 

40, [ YJI ( 4 . 9 )  

and the corresponding pressure is 

P = - PT-S  4 V 7 ~ 7  ~xp  - i ~0t - ~ z -  t~r + T 

5. The r e s u l t s  d i s c u s s e d  in  S e c s .  2 -4  r e p r e s e n t  t h e  s o l u t i o n  o f  t h e  a n t i s y m m e t r i c  p r o b -  
lem. For the solution symmetric in u, the amplitude of the incident T-S wave is the same as 
for the antisymmetric solution, and the conditions at y = 0 have the form 

v : Ou/Oy = 0, x : 0; v : O2v/0y ~ : 0, x > 0 .  ( 5 . 1 )  

R e p e a t i n g  t h e  c a l c u l a t i o n s  o f  Sec .  2, we o b t a i n  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  p o t e n t i a l  in  t h e  
limit y + 0: 

O ~  P ~-s ~ [ t (' h (p (~O/F (0)) at ] 
20)? ],/-- i2~r exPI~nniJ ~ i  --YY , Y > ~ ,  ~ = 0 ,  

] [ c _  
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F (~) = L ~ _ ~lJ~=0 
( 5 . 2 )  

The integral in expression (5.2) tends to zero in the limit R + ~, since F(tal)/F(0) + i on 
any finite part of c_ (Fig. 3b). This can be verified on the basis of asymptotic expansions 
of ~l and ~!2 [2]. We write expression (5.2) as follows in the limit y + 0, R + ~: 

PT-Sa exp(--?y), g > t ,  ~ = 0 .  (5 .3)  
2o? V :  i2~oH 

It follows from a comparison of Eqs. (3.8) and (5.3) that the contribution of the symmetric 
solution to the generation of sound can be disregarded. 

In fact, the boundary conditions (5.1) for the symmetric solution are reduced to the 
following conditions in the nonviscous limit: 

v = 0 ,  y = 0 ,  x < O ;  v = O, y = 0 ,  x > O .  

The T-S wave is not scattered under such conditions. 

The author is grateful to V. V. Pukhnachev for interest in the work and valuable advice. 
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